Turbulent Torques on Protoplanets in a Dead Zone

Abstract

Migration of protoplanets in their gaseous host disks may be largely responsible for the observed orbital distribution of extrasolar planets. Recent simulations have shown that the magnetorotational turbulence thought to drive accretion in protoplanetary disks can affect migration by turning it into an orbital random walk. However, these simulations neglected the disk's ionization structure. Low ionization fraction near the midplane of the disk can decouple the magnetic field from the gas, forming a dead zone with reduced or no turbulence. Here, to understand the effect of dead zones on protoplanetary migration, we perform numerical simulations of a small region of a stratified disk with magnetorotational turbulence confined to thin active layers above and below the midplane. Turbulence in the active layers exerts decreased, but still measurable, gravitational torques on a protoplanet located at the disk midplane. We find a decrease of 2 orders of magnitude in the diffusion coefficient for dead zones with dead-to-active surface density ratios approaching realistic values in protoplanetary disks. This torque arises primarily from density fluctuations within a distance of one scale height of the protoplanet. Turbulent torques have correlation times of only ~0.3 orbital periods and apparently time-stationary distributions. These properties are encouraging signs that stochastic methods can be used to determine the orbital evolution of populations of protoplanets under turbulent migration. Our results indicate that dead zones may be dynamically distinct regions for protoplanetary migration.

Publication
The Astrophysical Journal
Date
Links